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How to develop and use a Bayesian Belief
Network

R Montironi, W F Whimster, Y Collan, P W Hamilton, D Thompson, P H Bartels

Introduction
Histopathologists are accustomed to assessing
histological features expressed in linguistic or
descriptive terms, words and concepts and in-
tegrating them in order to reach a diagnosis in
their minds. If several histopathologists review
a case there is seldom 100% agreement on
the diagnosis. Sometimes they will accept a
majority opinion; sometimes the opinion of
the most respected, experienced or forceful
histopathologist prevails. It has been difficult
to examine the differences in histopathologists'
analyses in any meaningful way, although there
have been many attempts to weight particular
features both for diagnostic and prognostic
purposes, including that of Bloom and
Richardson in breast cancer.' There have been
attempts to give numerical gradations to verbal
descriptions, which has the effect of increasing
the thoroughness with which the slides are
examined, and, one hopes, the certainty with
which the diagnosis is reached.

Pathologists have been trying for some time
to combine their human skills in histo-
pathological diagnosis with the advantages
offered by computer systems. Expert systems
are computer programs designed to process
knowledge and reach diagnostic decisions in
the same way as human experts. Methods
which allow diagnostic knowledge to be rep-
resented within a computer system include
rules,2 artificial neural networks3 and inference
networks4. Of particular interest to this group
is a particular implementation of inference
networks called Bayesian Belief Networks
(BBNs).' BBNs can be visualised as "nodes"
connected by "links" where the nodes represent
chunks of knowledge and the links represent
the relation among these bits of knowledge. In
their simplest form they can be represented as
a series of diagnostic clues, each contributing
to a single diagnostic decision. BBNs are simple
to construct and when used, can provide a
numerical value of belief in the diagnostic al-
ternatives. Abmayr et al,5 Hamilton et alt and
Montironi et al' have published results from
using BBNs in the diagnosis of skin lesions,
breast lesions and prostate lesions. These
papers have largely dealt with how BBNs can
be applied to specific problems and we thought
that a more basic paper describing how the
calculations could be performed was necessary
for pathologists.
The ability to make diagnostic or prognostic

decisions in the presence of uncertainty is also
an important characteristic ofan expert system.
In spite of dealing constantly with uncertainty,
histopathologists may be unaware that the
study of uncertainty, its nature, sources and

effects on decision sequences, and numerical
assessment is a field of research in its own

right.8 The management of uncertainty has
two major theoretical bases, namely, probability
theory and possibility theory. Probability theory
is used when the uncertainty is due to ran-
domness. Probabilities are derived from ob-
serving the relative frequency with which an
event occurs (for example, in a group of
patients) and using this result to predict the
occurrence of the event in future patients. The
assumption is made that the patients are homo-
geneous in every other respect. This calls for
rigorous matching, which may be impossible.
While frequency counts represent the most
rigorous method for obtaining probability
measures they may not be available or even
obtainable. Alternatively, probabilities can be
assigned to events, based on the previous ex-
perience of "experts". These are by no means
arbitrary and tend to capture knowledge in the
form of human experience. These are termed
subjective or personal probabilities.

Possibility theory is applied when the un-

certainty is due to vagueness-for example,
in the terms used to describe a histological
feature. "Fuzzy logic"9 was developed in the
1 960s to assess situations in which math-
ematical probability was seen as inappropriate
but in which possibility theory could provide
consistent methodology. There are other
points to consider-for example, probabilities
must sum to unity over all possible outcomes;
possibilities have no such constraint. The
rules of combining evidence in a probabilistic
approach and in possibility based system are
different.
When uncertainty is assessed by a prob-

abilistic measure, the combining of evidence
may be based on Bayes theorem (Bayes,
Reverend Thomas, 1702-61), which allows
one to compute the probability of an event-
for example, a diagnosis, if some other event
has taken place-for example, the observation
of a histological feature. How the theorem
works is clearly explained by Bartels et al,4
using the probability of a high-risk woman
developing severe cervical intraepithelial neo-
plasia (CIN III) as an example, in which the
known prior probability for all women to
develop CIN III is combined with the con-
ditional probability (probability of CIN III
given the presence of a certain histological
feature) to obtain a new probability that the
woman falls into the CIN III group.
The assumption has to be made that the

conditional probabilities are independent of
each other, because otherwise the com-
putational load becomes enormous-that is,
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2' for n clues (4 billion conditional prob-
abilities for 32 clues!). But in histopathological
diagnosis and prognosis the clues are almost
never independent. To deal with this one can
use the knowledge of experts to draw up a
network that uses only the most effective and
independent clues and then apply Bayes
theorem to it: hence the Bayesian Belief
Network, which has been extensively re-
searched by Pearl.'0

Construction of a BBN begins by defining
the diagnostic problem. This might be the
simple distinction between benign and malig-
nant for a particular tissue, or the grading of
a lesion (for example, grade 1, 2, 3) or a
differential diagnosis (for example, atypical
ductal hyperplasia/ductal carcinoma in situ).
The possible diagnostic outcomes for a given
problem are held in a decision node. Next
the pathologist defines each of the microscopic
and/or clinical features which are important
in making the diagnostic decision in question.
Each feature is held in a separate evidence
node and includes the name of the feature and
its possible outcomes (for example, tubular
formation: well defined/moderately well de-
fined/poorly defined). The relation between
each feature (evidence node) and the diag-
nostic decision (decision node) is then de-
fined. A clear advantage of this approach is
that one can retain the terminology that
pathologists use in the description of histo-
logical or cytological clues. This is potentially
valuable because, if it lives up to expectations,
its use will not only facilitate more uniform
reporting of pathological material but provide
insight into how diagnostic decisions are
made.

An example
In the example below we show (A) how to
design and create a BBN and (B) how to
use it to reach a diagnostic decision. The
calculations needed to do this are given. They
are relatively simple and can be worked out
using a pocket calculator, which the reader
may also like to use to follow the process.
The authors have found it necessary to
understand the calculations in order to ap-
preciate how BBNs work. In practice, how-
ever, software is available which facilitates the
creation of a network and which carries out
all the diagnostic calculations very rapidly.

In our example we develop and use a BBN
for the grading of breast cancer according to
the Bloom and Richardson scheme.'

(A) Creating a BBN
There are four steps in creating a BBN.

STEP Al. DEFINE THE DECISION NODE (FIG 1)
In our hypothetical case of breast cancer we
want to decide the Bloom and Richardson
grade. We therefore create the decision node
which contains the grade, for which we have
three possible outcomes, grades 1, 2 or 3. We
now need to allocate a prior probability to each

of the three possible outcomes; we assume that
the pathologist has no preconception as to
whether a case will turn out to be grade 1, 2
or 3, so we give an equal Prior Probability to
each of the three grades (table 1). Also stored
at the decision node are two additional values
for each diagnostic outcome. These are called
the Relative Likelihood Ratio (abbreviated to
Lambda) and the Belief. The belief is calculated
by multiplying the prior probability by the
lambda. Initially, the lambda is set to 1 0. At
the start, therefore, the belief equals the prior
probability. While these values are not im-
portant at this stage, they are essential and will
be explained later when we use the network to
make a decision.

STEP A2. DEFINE THE EVIDENCE NODES (FIG 1)
We must next define the features ofimportance
in making the diagnostic decision. In our ex-
ample three histological features are used as
evidence in the grading of a breast cancer.
These are listed with their possible outcomes
as defined by us:

* tubule formation; possible outcomes: well
defined, moderately well defined, poorly de-
fined;

* mitotic figures; possible outcomes: rare mi-
toses, 2-3 mitoses/high power field (hpf),
several mitoses/hpf;

* pleomorphism; possible outcomes: uniform
nuclei, moderate pleomorphism, severe pleo-
morphism.

These are also illustrated in fig 1 as evidence
feeding into the decision node. Each evidence
node also requires prior probability, lambda
and belief values. These are calculated in the
initialisation step.

STEP A3. DEFINING THE RELATION BETWEEN
THE EVIDENCE AND THE DECISION
The features described by the evidence nodes
in Step A2 have a bearing on the diagnostic
decision. This relation is defined by estimating
the probability of finding the evidence node
outcomes (for example, tubule formation: well
defined) given the decision node outcomes (for
example, grade 1). These are naturally called
conditional probability matrices (CPM) and
are established by the author of the BBN from
the best information available, whether it is
actual frequency data, published data or per-
sonal experience. In our example we judge
from our own experience that the probability
is that in a case of grade 1 carcinoma of the
breast we will find tubular formation to be well
defined in 86% of cases (a probability of 086),
moderately well defined in 9% of cases (a
probability of 0.09) and poorly defined in 5%
of cases (a probability of 005) (fig 2). This
accounts for 100% of cases. Our judgements
of what we would expect tubular formation to
show in grades 2 and 3, and the matrices
established from what we would expect to find
in each grade with regard to mitotic figures and
nuclear pleomorphism are shown in table 2.
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Decision node

* laid. C

Figure 1 Shallow network with an open-tree hierarchic topology with a diagnostic decision node and three first-level descendant nodes.

Table I The decision node showing the figures entered at
the initialisation stages

Prior
Grade probability Lambda Belief

1 033 1.0 033
2 033 1-0 033
3 034 1-0 0*34

Prior probability x lambda= belief.

STEP A4. INITIALISATION OF THE NETWORK
As stated previously, prior probabilities,
lambdas and beliefs need to be calculated for
the evidence nodes before the network can
be used. Table 3 shows that this is done by
combining the numbers in the decision node
(table 1) with the figures in the CPM (table
2). For the tubules the prior probability of a
case being grade 1 (0 33), grade 2 (0 33) or
grade 3 (0 34) is multiplied by the conditional
probability of well defined, moderately well
defined, and poorly defined tubular formation
being seen. These products are summed as
shown in table 3A. The totals are entered as

the prior probability in the tubular formation
evidence node (table 3B). The same procedure
is completed for the mitotic figures and nuclear
pleomorphism evidence nodes (fig 3) (table
3B). As in Step Al, the lambda values for the
evidence node outcomes are initially set to 1 0
and multiplication of the prior probability with
the lambda for each outcome gives the belief
values. In the BBN creation stage the lambda
and belief columns in table 3B are merely
awaiting evidence.

(B) Using the BBN to make a decision
In order to use the BBN to reach a new belief
in the diagnostic outcomes we have to enter
evidence about a specific case into the network.
The process of how this evidence modifies the
diagnostic beliefs takes place in four steps.

STEP Bi. ENTERING THE EVIDENCE INTO THE
EVIDENCE NODES
The BBN operates interactively with the path-
ologist providing information on each piece of

Decision notdc

Evidence nodet 1 videncf -z

Figure 2 Figure I showing conditional probability matrices in position.
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Table 2 Conditional probability matrices for the links
between the decision node and the tubule formation,
mitotic figures and nuclear pleomorphism evidence nodes.
This numerical relation between evidence and decision
nodes is defined by the "expert"

Decision node

Grade

Evidence node 1 2 3

Tubule formation
well defined 0-86 0-10 0-01
moderately well defined 0 09 0 70 0-09
poorly defined 0 05 0-20 0 90

Mitotic figures
rare 0-80 010 001
2-3/hpf 0-15 0 45 0-29
several/hpf 0-05 0 45 0 70

Nuclear pleomorphism
uniform 0-75 0-15 0 01
moderate 0-20 0 70 0 19
severe 005 0-15 0-80

Table 3A Calculation of the prior probability numbers for the tubule formation evidence
node

Decision node x CPM (for well defined)
Grade 1 0 33 0-86=0-2838
Grade 2 0 33 0 10=0 0330
Grade 3 0 34 0 01=0 0034

total = 0-3202

Decision node x CPM (for moderately well defined)
Grade 1 0-33 0 09 = 0 0297
Grade 2 0 33 0 70=0-2310
Grade 3 0 34 0-09=0 0306

total = 0-2913

Decision node x CPM (for poorly defined)
Grade 1 0 33 0-05=0-0165
Grade 2 0-33 0-20=0-0660
Grade 3 0 34 0 90 =0 3060

total = 0-3885

Table 3B Evidence node values for tubule formation after calculating prior probability

PP Lambda Belief

Well defined 0-32 1 0 0-32
Moderately well 0-29 1 0 0-29
Poorly defined 0-39 1.0 0-39

PP = prior probability.

evidence. This must be presented to the net-
work in the formation of a relative likelihood
ratio (lambda) vector for each feature. This
vector is nothing more than a set of numbers
which describes the relative likelihood that the
outcomes for a specific feature are present in
the current case that is being examined. These
numbers can be estimated subjectively. For
example, we may want to be discrete about our
assessment of features and give the following
relative likelihood ratio for tubule formation:

Tubule formation

well
defined
10

moderately well
defined
1

poorly
defined
1

This lambda vector of [10 1 1] indicates that
we are certain that the current case shows well
defined tubules (see Abmayr et aP). We can,
however, allow ourselves more freedom in our
allocation of a relative likelihood ratio for histo-
logical features. Ifwe wish, we can set the scale
between 0 0 and 1 0 and define the following
likelihood ratio:

Tubule formation

well
defined
0 95

moderately well
defined
0-20

poorly
defined
0.01

This lambda vector of [0 95 0-20 0 01] ex-

presses a strong likelihood that the case shows
well defined tubules, but that it may also show
moderately defined tubules (see Hamilton et
alP). This allows us to express uncertainty,
which is common in the assessment of histo-
logical features. Note that in both examples
the values do not have to sum to unity, because
ultimately the belief vector values are re-

calculated to sum to unity ("normalised").
Another promising way in which the relative

likelihood ratio can be arrived at, without the
pathologist having to convert what he sees into

Decision node

Bloom and Richardson grade
PP Lambda Belief

*Grade 1 0 33 0 427 0-979
* Grade 2 0 33 0 009 0 021
* Grade 3 0.34 0.000 0.000

4

Evidence node

Mitotic figures
Lambda

* Rare mitoses 0 90
* 2-3 mitoses/HPF 0.20
* Several mitoses/HPF 0 01

Evidence node

Nuclear pleomorphism
Lambda

* Uniform nuclei 0 85
. Moderate pleomorphism 0.25

d Severe pleomorphism 0.01

Figure 3 Data resulting from initialising of the network and entry of data into the three evidence nodes.

Evidence node

Tubule formation
Lambda

* Well defined 095
* Moderately well defined 0 10
* Poorly defined 0 01

.
~~~~~~~~~~
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Poorly defined Moderately defined Well defined

09

0-8

0-7

0-6

0-5

0.4

0-3

0-2

0-1

Table 4 The hypothetical evidence from the hypothetical
example case for each feature is entered as a relative
likelihood ratio (lambda) vector for each evidence node

Evidence node Lambda

Tubule forrnation
well defined 0-95
moderately 0 10
poorly defined 0 01

Mitoses
rare 0 90
2-3/hpf 0-20
several/hpf 001

Pleomorphism
uniform 0-85
moderate 0-25
severe 0 01

Diagnostic clue: tubule formation

Figure 4 Graphical representation of overlapping distribution of membership functions
for the feature, tubule formation. The dense vertical line represents the position where a
new case is thought to lie in relation to the feature outcomes. The likelihood vector for this
position can be obtained by reading the values on the y-axis where this line cuts the
membership functions. Here we have a likelihood vector of [0 065 0 35] for poorly,
moderately and well defined tubule formation.

At, k S' ,<0' ' tS '; L' ''- 0 000~~N'.'3.....

Figure S Images of the different feature outcomes for tubule formation showing the
membership functions.

numbers, is to draw a graph and represent the
outcomes of each feature as an overlapping
distribution or membership curve (fig 4). By
marking the position on the x-axis where we feel
the case in question falls, the relative likelihood
ratio vector for that feature is expressed by the
ordinate values of where that position cuts
the membership curves. This is essentially a

friendly graphical means of arriving at relative
likelihood ratio vectors which can be entered
as evidence into the network via the computer
screen. We can take this a step further and
superimpose images on to the membership
curves that represent the various feature out-
comes. All the pathologist has to do is compare
what he sees microscopically in the current case

with these images, position a cursor on the
spectrum where the current case lies in relation
to the images and the relative likelihood ratio
vector is automatically computed and entered
into the BBN (see Hamilton et al"; fig 5).

STEP B2

Say, after looking at a case we have decided that
for the feature tubule formation, the relative
likelihood ratio (lambda) vector should be
[0 95 0-10 0 01] for the outcomes well defined,
moderately well defined and poorly defined.
This and the other relative likelihood vectors

for mitoses and pleomorphism are shown in
table 4.
We begin our calculations by entering the

relative likelihood ratio vector for tubule form-
ation into the BBN. The relative likelihood
vector is first multiplied by the initial lambda
values at the tubule formation node to give a
new lambda vector. As the initial lambda vector
values were originally set to 1 0 (see Step A4),
multiplication gives a new lambda vector at
that evidence node which simply equals the
relative likelihood ratio vector.
We now calculate the product of the new

lambda vector and the CPM which provides
an "external" lambda vector for entry into the
decision node. This involves simple matrix al-
gebra and the calculations are shown in table
5. Here, the external lambda vector for the
decision node is calculated to be [0-827 0-167
0-021].

STEP B3
The "external" lambda vector for the decision
node is multiplied by the "internal" lambda
vector at the decision node to give a revised
internal lambda vector. Again as the initial
internal lambda values at the decision node
were originally set to 1h0 (see Step Al), the
new internal lambda equals the external lambda
(that is, [0-827 0-167 0021]).

STEP B4
At the decision node, the new internal lambda
vector is multiplied by the prior probability to
obtain a new belief vector which must then
be normalised (that is, each value is divided
through by the sum of the values) (table 6).
This gives us new beliefvalues of 0-815, 0-164,
and 0-021 for the diagnostic alternatives grade
1, grade 2 and grade 3, indicating that after
observing tubule formation, our belief that the
case is a grade 1 cancer is strong. The belief
vector is thus the product of the prior prob-
ability vector, in this case the equal probability
that the case will fall into grade 1, grade 2
or grade 3, and the relative likelihood ratio
(lambda) vector, which, as shown above, is
obtained by processing the evidence from the
evidence nodes through the CPMs.
One can therefore imagine the above process

as a message which begins by entering evidence
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Table S Calculation of evidence node external lambda vector message for tubule formation to the decision node

Tubule formation Lambda x CPM (for grade 1)
well defined 0-95 0-86 =0 817
moderately well 0 10 0 09 =0 009
poorly defined 0 01 0 05 =0-0005

total=0 8265

Lambda x CPM (for grade 2)
well defined 0 95 0 10 = 0 095
moderately well 0 10 0 70 = 0-07
poorly defined 0 01 0-20 =0-002

total = 0-167

Lambda x CPM (for grade 3)
well defined 0 95 0 01 =0 0095
moderately well 0 10 0-02 =0-002
poorly defined 0 01 0 90 =0-009

total=0 0205

Lambda message for decision node from tubule fornation= [0 827 0-167 0-021].

into the evidence node, the internal lambda is
calculated, this message is passed via the CPM
to form an external lambda for the decision
node. This updates the internal lambda of the
decision node which in turn updates the beliefs
in the diagnostic alternatives. The message is
carried by the lambda values within the BBN
and so this propagation of change from evi-
dence node to decision node is often called the
lambda message.
What next happens is that another message

(called the pi message) is passed down to the
remaining evidence nodes. This updates their
prior probabilities. This process has no effect
on the decision in a single level BBN such as
our current example so the calculations will
not be described here. They have been given
previously by Bartels et al.4

Steps B1 to B4 are repeated for the mitoses
evidence. These calculations are summarised
in box 1 but are carried out in an identical
manner to the entry of evidence for tubule
formation. The only important thing to re-
member is that the internal lambda values at
the diagnostic node have now been changed
by the entry of tubule formation and updating
the evidence for the next evidence nodes must
use these new values. After the entry of both
tubule formation and mitoses, the beliefs in the
diagnostic alternatives are as follows: grade 1,
0949; grade 2, 0-046; and grade 3, 0005.

Steps B 1 to B4 are repeated for the pleo-
morphism evidence. These calculations are
summarised in box 2 and are carried out as
before. After the entry of all three pieces of
evidence, the belief in the diagnostic al-
ternatives are as follows: grade 1, 0 979; grade
2, 0021; and grade 3, 0 000.

Discussion
The clear cut example shown above was de-
signed to illustrate the calculations involved.
The benefit really comes when we are less

Table 6 Recalculation of the decision node belief after entering external lambda for
tubule formation from table 5

Grade PP Lambda Belief Normalised belief

1 0-33 x 0-827 = 0-273 0-815
2 0-33 x 0-167 = 0-055 0-164
3 0-34 x 0-021 0-007 0-021

1*000

PP =prior probability.

certain about how defined the tubules are, how
many mitoses there are or how uniform the
nuclei really are across the lesion, as we can
express the outcomes for each feature as a
number ranging from 0-00 to 1-00 for each.
This approach allows the combination of such
"uncertain" evidence to provide an overall be-
lief for the diagnostic outcomes. We maintain
the use of descriptive terminology in our as-
sessment of cases but obtain numerical data
to support our decision. As can be seen, the
collection of evidence is sequential and the
belief in the diagnostic alternatives is based on
the accumulated evidence to date-that is, a
final value of belief will be given even if certain
evidence is missing.
Working with the pocket calculator becomes

laborious even with three features and only one
level in the hierarchy of evidence nodes as
above. Other diagnostic scenarios are much
more complex. For example, in a BBN de-
signed by Montironi et al," a total of eight
diagnostic clues was used to make the diag-
nostic distinction between benign, low grade
prostate intraepithelial neoplasia (PIN), high
grade PIN, cribriform carcinoma, and large
acinar pattern carcinoma. Another BBN cre-
ated to support the diagnosis of "benign" or
"malignant" in fine needle aspirates of breast
lesions6 consisted of 10 features with 27 pos-
sibilities (outcomes). Here, computer programs
designed to accept evidence and process these
through a BBN to arrive at a final decision node
belief are vital.5 A suitable software program
is now commercially available (DIAGSOFT,
Kleselstrasse 14a, D-8099, Munich, Germany)
for the development and investigation ofBBNs
in pathology. This requires only a cheap com-
puter (386 processor, 4 Mb RAM, Windows
3-0 or higher). Other software packages are
being developed with specific applications in
mind."
BBNs have been created and applied to

microscopic (histological or cytological) diag-
nosis and/or prognostic grading of melanocytic
lesions,5 breast lesions6'1 and prostatic
lesions.7121' Others for example, lung cancer
biopsy typing, are in progress. Composite net-
works, in which several networks are combined
and the most suitable one pursued for the
diagnosis that emerges, are in prospect.

It is proving easy for the "experts" to define
the diagnostic or prognostic outcomes for the
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parent node and not too difficult to select
the microscopic clues and outcomes for the
evidence nodes; easy to obtain the prior prob-
abilities for the parent node but more difficult
to "estimate" the numbers for the CPM. It
is proving more time-consuming for even an

experienced pathologist to read the slides with
attention to the microscopical clues and out-
comes (nine in the example above; 27 in the
study by Hamilton et alP) and to record them
and read them into the computer program than
for him to use his normal mental processing
and descriptive procedure. Different observers
do not necessarily come up with the same

answers even with BBNs'4 and the reasons for
that must be explored. It is likely that this is
related to the translation of observations into
numbers, a task with which most pathologists
are unfamiliar. However, as mentioned above,
Hamilton's group and others are already work-
ing on the use of stored computer images as

guides to visual assessment and as a means of
evidence entry into the BBN, thus combining
the recording and entering step.614 It is also
possible to examine the sequence of data entry
to see how the diagnostic outcomes were affec-
ted by the features chosen and to compare the
sequences of different observers.614 We expect
the latter, together with the need for specific
feature observation and the creation of sets of

reference images, to become very valuable in
the training of microscopists, in audit, con-

tinuing education, and in routine diagnostic
pathology.
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Box 1 Calculations for evidence of mitoses

(i) At the evidence node
Relative likelihood
vector (evidence) Internal lambda New internal lambda

[090 020 001] x [P0 1 0 10] = [090 0-20 001]

Internal lambda CPM External lambda
0-80 0 15 0 051

[0 90 0-20 0 01] x 0 10 0 45 0 45 = [0 750 0-185 0 074]
t001 0-29 0 70]

(ii) At the decision node
External lambda Internal lambda New internal lambda

[0 750 0-185 0-074] x [0-827 0-167 0-021] = [0-620 0-031 0-002]

New internal lambda Prior probability Belief
[0-620 0-031 0-002] x [0 33 0 33 0 34] = [0-205 0 010 0 001]

Normalised belief
[0-949 0-046 0-005]

Box 2 Calculations for evidence of pleomorphism

(i) At the evidence node
Relative likelihood
vector (evidence) Internal lambda New internal lambda

[0-85 0-25 0-01] x [1-0 1-0 1-0] = [0-85 0-25 0-01]

New internal lambda CPM External lambda
r0-75 0-20 0-05

[0-85 0-25 0-0] x 00*15 0-70 0-15 = [0-688 0-304 0-064]
t001 0-19 0-80

(ii) At the decision node
External lambda Internal lambda New internal lambda

[0-688 0-304 0-064] x [0-620 0-031 0-002] = [0-427 0-009 0-000]

New internal lambda Prior probability Belief
[0-427 0-009 0-000] x [0-33 0-33 0-34] = [0-141 0-003 0-000]

Normalised belief
[0-979 0-021 0-000]
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Forthcoming papers in the Clinical Molecular Pathology edition

* The genetics of inherited colon cancer
Y Wallis, F Macdonald

* Use of non-radioactive detection in SSCP, direct DNA sequencing and LOH analysis
I Petersen, M B Reichel, M Dietel

a Detection of clonal immunoglobulin gene rearrangements in the peripheral blood progenitor cells of
patients with multiple myeloma: the potential role of purging with CD34 positive selection
R G Owen, A P Haynes, PA Evans, R J Johnson, A C Rawstron, G McQuaker, et al

* Relation between lp36 deletion and DNA ploidy in breast carcinoma: an interphase cytogenetic study
F Farabegoli, N Baldini, D Santini, C Ceccarelli, M Taffurelli, D Trere, et al

* Nomenclature for proteins: is calprotectin a proper name for the elusive myelomonocytic protein?
M K Fagerhol

a Differential expression of novH and CTGF in human glioma cell lines
L W Xin, C Martinerie, W Zumkeller, M Westphal, B Perbal
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